viernes, 10 de agosto de 2012
SOLUCIÓN DE PREGUNTAS
1). Un ordenador maneja información de todo tipo. Nuestra perspectiva humana nos permite rápidamente diferenciar lo que son números, de lo que es texto, imagen. Sin embargo al tratarse de una máquina digital, el ordenador sólo es capaz de representar números en forma binaria. Por ello todos los ordenadores necesitan codificar la información del mundo real al equivalente binario entendible por el ordenador. El sistema de numeración que utilizan los ordenadores es el sistema binario que solo utiliza dos dígitos 0 y 1.
2). El número 125 en forma binaria se debe dividir por dos: 125/2=62 resto 1 62/2= 31 esto 0 31/2=15 resto 1 15/2=7 resto 1 7/2=3 resto 1 3/2=1 resto 1 Luego lo organizamos de el último valor de atrás hacia adelante. Entonces 125 en forma binaria es: 111101.
3). El numero binario 1011 en forma decimal es: 11. Porque 1*23 + 0*22 + 1*21 + 1*20 , es decir: 8 + 0 + 2 + 1 = 1
5). Un bit es un dígito del sistema de numeración binario. Mientras que en el sistema de numeración decimal se usan diez dígitos, en el binario se usan sólo dos dígitos, el 0 y el 1.El bit es la unidad mínima de información empleada en informática, en cualquier dispositivo digital, o en la teoría de la información. Con él, combinación con los prefijos de cantidad. Originalmente el byte fue elegido para podemos representar dos valores cuales quiera, como verdadero o falso, abierto o cerrado, blanco o negro, norte o sur, masculino o femenino, rojo o azul, etc. Basta con asignar uno de esos valores al estado de "apagado" (0), y el otro al estado de "encendido" (1).l 0 y el 1.
6).El BYTE u octeto es una secuencia de bits contiguos, cuyo tamaño depende del código de información o código de caracteres en que sea definido. Se usa comúnmente como unidad básica de almacenamiento de datos en ser un submúltiplo del tamaño de palabra de un ordenador, desde cinco a doce bits.
7). En informática, la memoria (también llamada almacenamiento) se refiere a parte de los componentes que integran una computadora. Son dispositivos que retienen datos informáticos durante algún intervalo de tiempo. Las memorias de computadora proporcionan una de las principales funciones de la computación moderna, la retención o almacenamiento de información. Es uno de los componentes fundamentales de todas las computadoras modernas que, acoplados a una unidad central de procesamiento .
8). 1 Bit = 1 digito sea ya sea 1 o 0 8 Bits = Byte 1 megabyte = 1024 bytes.
9). 1(Mb)*1024(Kb)*1024(byte)*8 (bits) =8,388,608 bits. 1MB=8,388,608 bits.
10). Uno de los objetivos fundamentales de un ordenador es el de procesar la información. Este proceso se puede dividir en tres fases. Fase de entrada de información. Los datos son introducidos en el ordenador por el usuario. Generalmente para esta fase se utiliza el teclado o cualquier dispositivo de entrada. Fase de procesamiento. Una vez que los datos se han introducido en el ordenador, éste comienza su tratamiento, realizando cálculos y operaciones necesarias para obtener los resultados. Estas operaciones se ejecutan a través de los programas, aunque es el procesador el encargado de dirigirlas. Fase de salida. Una vez que los datos se han procesado, se muestran los resultados al usuario. Para ello se suele hacer uso de cualquier dispositivo de salida, bien sea la pantalla, la impresora, etc.
11). En informática, se denomina periféricos a los aparatos y/o dispositivos auxiliares e independientes conectados a la unidad central de procesamiento de una computadora. Se consideran periféricos tanto a las unidades o dispositivos a través de los cuales la computadora se comunica con el mundo exterior, como a los sistemas que almacenan o archivan la información, sirviendo de memoria auxiliar de la memoria principal. Los periféricos pueden clasificarse en 5 categorías principales: Periféricos de entrada. Son los que permiten introducir datos externos a la computadora para su posterior tratamiento por parte de la CPU. Estos datos pueden provenir de distintas fuentes, siendo la principal, un ser humano. Ejemplo: el mouse, el teclado, el micrófono. Periféricos de salida. Son los que reciben la información procesada por la CPU y la reproducen, de modo que sea perceptible al usuario. Algunos ejemplos son : el monitor, el altavoz, la impresora, la tarjeta de sonido etc. Periféricos de entrada y salida (E/S) Sirven básicamente para la comunicación de la computadora con el medio externo. Los periféricos de entrada/salida son los que utiliza el ordenador tanto para mandar como para recibir información. Su función es la de almacenar o guardar, de forma permanente o virtual, todo aquello que hagamos con el ordenador para que pueda ser utilizado por los usuarios u otros sistemas. Ejemplos. Memoria portátil, dicó duro, pantalla táctil. Periféricos de almacenamiento. Se encargan de guardar los datos de los que hace uso la CPU, para que ésta pueda hacer uso de ellos una vez que han sido eliminados de la memoria principal, ya que ésta se borra cada vez que se apaga la computadora. Pueden ser internos, como un disco duro, o extraíbles, como un CD. Periféricos de comunicación. Su función es permitir o facilitar la interacción entre dos o más computadoras, o entre una computadora y otro periférico externo a la computadora. Entre ellos se encuentran los siguientes: computador, tarjeta inalámbrica, tarjeta de red.
12).Por procesamiento de datos se entienden habitualmente las técnicas eléctricas, electrónicas o mecánicas usadas para manipular datos para el empleo humano o de máquinas. Es la capacidad del Sistema de Información para efectuar cálculos de acuerdo con una secuencia de operaciones preestablecida. Estos cálculos pueden efectuarse con datos introducidos recientemente en el sistema o bien con datos que están almacenados. Esta característica de los sistemas permite la transformación de datos fuente en información que puede ser utilizada para la toma de decisiones, lo que hace posible, entre otras cosas, que un tomador de decisiones genere una proyección financiera a partir de los datos que contiene un estado de resultados o un balance general de un año base.
13).El microprocesador es el circuito integrado central y más complejo de un sistema informático; a modo de ilustración, se le suele asociar por analogía como el «cerebro» de un computador. Es un circuito integrado constituido por millones de componentes electrónicos. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador. Es el encargado de ejecutar los programas; desde el sistema operativo hasta las aplicaciones de usuario; sólo ejecuta instrucciones programadas en lenguaje de bajo nivel, realizando operaciones aritméticas y lógicas simples, tales como sumar, restar, multiplicar, dividir, las lógicas binarias y accesos a memoria.
14).La unidad de control y la unidad aritmético-lógica. La unidad de control (UC) es uno de los tres bloques funcionales principales en los que se divide una unidad central de procesamiento (CPU). Los otros dos bloques son la Unidad de proceso y el bus de entrada/salida. Su función es buscar las instrucciones en la memoria principal, decodificarlas (interpretación) y ejecutarlas, empleando para ello la unidad de proceso. Existen dos tipos de unidades de control, las cableadas, usadas generalmente en máquinas sencillas, y las micro- programadas, propias de máquinas más complejas. En el primer caso, los componentes principales son el circuito de lógica secuencial, el de control de estado, el de lógica combinacional y el de emisión de reconocimiento de señales de control. En el segundo caso, la microprogramación de la unidad de control se encuentra almacenada en una micro -memoria, a la cual se accede de manera secuencial (1, 2,..., n) para posteriormente ir ejecutando cada una de las microinstrucciones. Unidad Aritmético- lógica Su misión es realizar las operaciones con los datos que recibe, siguiendo las indicaciones dadas por la unidad de control. El nombre de unidad aritmética y lógica se debe a que puede realizar operaciones tanto aritméticas como lógicas con los datos transferidos por la unidad de control.La unidad de control maneja las instrucciones y la aritmética y lógica procesa los datos.Para que la unidad de control sepa si la información que recibe es una instrucción o dato, es obligatorio que la primera palabra que reciba sea una instrucción, indicando la naturaleza del resto de la información a tratar. Para que la unidad aritmética y lógica sea capaz de realizar una operación aritmética, se le deben proporcionar, de alguna manera, los siguientes datos: 1. El código que indique la operación a efectuar. 2. La dirección de la celda donde está almacenado el primer sumando. 3. La dirección del segundo sumando implicado en la operación. 4. La dirección de la celda de memoria donde se almacenará el resultado.
15).Nombre y marca del procesador, nombre del núcleo, Velocidad real en MHz del micro, Velocidad en Mhz del FSB, chipset y velocidad/tipo de RAM empleada.
16). La memoria RAM es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada. Se le llama RAM porque es posible acceder a cualquier ubicación de ella aleatoria y rápidamente Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Hay dos tipos básicos de memoria RAM: · DRAM (Dynamic RAM), RAM dinámica · SRAM (Static RAM), RAM estática. La RAM dinámica necesita ser refrescada cientos de veces por segundo, mientras que la RAM estática no necesita ser refrescada tan frecuentemente, lo que la hace más rápida, pero también más cara que la RAM dinámica. Ambos tipos son volátiles, lo que significa que pueden perder su contenido cuando se desconecta la alimentación. Existen otros tipos de memorias RAM como: VRAM. Una memoria de propósito especial usada por los adaptadores de vídeo. A diferencia de la convencional memoria RAM, la VRAM puede ser accedida por dos diferentes dispositivos de forma simultánea. Esto permite que un monitor pueda acceder a la VRAM para las actualizaciones de la pantalla al mismo tiempo que un procesador gráfico suministra nuevos datos. VRAM permite mejores rendimientos gráficos aunque es más cara que la una RAM normal. SIMM: un tipo de encapsulado consistente en una pequeña placa de circuito impreso que almacena chips de memoria, y que se inserta en un zócalo SIMM en la placa madre o en la placa de memoria. Los SIMMs son más fáciles de instalar que los antiguos chips de memoria individuales, y a diferencia de ellos son medidos en bytes en lugar de bits.
17). Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de Megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante el computador por medio del protocolo de comunicación SPD. Valores de módulos de memoria RAM: JEDEC: Módulos SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits. Módulos DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits. Módulos SO miniaturizado de DIMM. También de 64 bits.-DIMM: Usado en computadores portátiles. Formato DDR SDRAM: C 3200 o DDR 400: funciona a un máx. De 200 MHz DDR2 SDRAM: P C2-4200 o DDR2-533: funciona a un máx. De 533 MHz. P C2-5300 o DDR2-667: funciona a un máx. De 667 MHz P C2-6400 o DDR2-800: funciona a un máx. De 800 MHz. PC2-8600 o DDR2-1066: funciona a un máx. de 1066 MHz. PC2-9000 o DDR2-1200: funciona a un Max de 1200 MHz DDR3 SDRAM: PC3-8600 o DDR3-1066: funciona a un máx. de 1066 MHz. PC3-10600 o DDR3-1333: funciona a un máx. de 1333 MHz PC3-12800 o DDR3-1600: funciona a un máx. de 1600 MHz.
18). La memoria de solo lectura, conocida también como ROM , es un medio de almacenamiento utilizado en ordenadores y dispositivos electrónicos, que permite solo la lectura de la información y no su escritura, independientemente de la presencia o no de una fuente de energía. Los datos almacenados en la ROM no se pueden modificar, o al menos no de manera rápida o fácil. Se utiliza principalmente para contener el firmware(programa que está estrechamente ligado a hardware específico, y es poco probable que requiera actualizaciones frecuentes) u otro contenido vital para el funcionamiento del dispositivo, como los programas que ponen en marcha el ordenador y realizan los diagnósticos.
19).Una memoria caché es una memoria en la que se almacenas una serie de datos para su rápido acceso. Existen muchas memorias caché (de disco, de sistema, incluso de datos, como es el caso de la caché de Google), pero en este tutorial nos vamos a centrar en la caché de los procesadores. Básicamente, la memoria caché de un procesador es un tipo de memoria volátil (del tipo RAM), pero de una gran velocidad. En la actualidad esta memoria está integrada en el procesador, y su cometido es almacenar una serie de instrucciones y datos a los que el procesador accede continuamente, con la finalidad de que estos accesos sean instantáneos. Estas instrucciones y datos son aquellas a las que el procesador necesita estar accediendo de forma continua, por lo que para el rendimiento del procesador es imprescindible que este acceso sea lo más rápido y fluido posible.Desde el punto de vista del hardware, existen dos tipos de memoria cache; interna y externa. La primera, denominada también cache primaria, caché de nivel 1 o simplemente caché L1 (Level one). La segunda se conoce también como cache secundaria, cache de nivel 2 o cache L2. Caché interna Es una innovación relativamente reciente; en realidad son dos, cada una con una misión específica: Una para datos y otra para instrucciones. Están incluidas en el procesador junto con su circuitería de control, lo que significa tres cosas: comparativamente es muy cara; extremadamente rápida, y limitada en tamaño (en cada una de las cachés internas, los 386 tenían 8 KB; el 486 DX4 16 KB, y los primeros Pentium 8 KB). Como puede suponerse, su velocidad de acceso es comparable a la de los registros, es decir, centenares de veces más rápida que la RAM. Caché externa Es más antigua que la interna, dado que hasta fecha "relativamente" reciente estas últimas eran impracticables. Es una memoria de acceso rápido incluida en la placa base, que dispone de su propio bus y controlador independiente que intercepta las llamadas a memoria antes que sean enviadas a la RAM (H2.2 Buses locales). La caché externa típica es un banco SRAM ("Static Random Access Memory") de entre 128 y 256 KB. Esta memoria es considerablemente más rápida que la DRAM ("Dynamic Random Access Memory") convencional, aunque también mucho más cara (tenga en cuenta que un aumento de tamaño sobre los valores anteriores no incrementa proporcionalmente la eficacia de la memoria caché). Actualmente (2004) la tendencia es incluir esta caché en el procesador. Los tamaños típicos oscilan entre 256 KB y 1 MB. Caché de disco Además de las anteriores, que son de propósito general, existe una caché de funcionalidad específica que se aloja en memoria RAM estándar. Es la caché de disco (nos hemos referido a ella en la introducción de este epígrafe), destinada a contener los datos de disco que probablemente sean necesitados en un futuro próximo y los que deben ser escritos. Si la información requerida está en caché, se ahorra un acceso a disco, lo que es centenares de veces más rápido (recuerde que los tiempos de acceso a RAM se miden en nanosegundos y los de disco en milisegundos Unidades de medida). Caché oportunista Existe un tipo especial que podríamos considerar "de aplicación", denominada caché oportunista ("Opportunistic cache"). Está relacionada con los problemas de bloqueos de ficheros en entornos multiusuario en los que distintas aplicaciones pueden acceder a los mismos datos. En estos casos, los Sistemas Operativos disponen de mecanismos para que un usuario (programa de aplicación) obtenga el bloqueo de todo un fichero o parte de él. La teoría es que mientras se mantenga el bloqueo, ningún otro usuario puede modificar el fichero (tal vez si leerlo), y que una vez finalizadas las modificaciones, el usuario desbloquea el fichero para que otros puedan utilizarlo. Sin embargo, en determinadas aplicaciones de red, y con objeto de aumentar el rendimiento, se utiliza un sistema mixto denominado bloqueo oportunista oplock ("Opportunistic locking"), en el que el usuario comunica al Sistema que utilizará esta modalidad [6]. Para ello, obtiene una copia de la totalidad del fichero, que almacena un una caché local oportunista. De esta forma, las operaciones son más rápidas que si tiene que realizarse a través de la red las peticiones de distintos trozos, junto con las correspondientes solicitudes de bloqueo/desbloqueo. Finalmente, cuando el usuario ha finalizado las operaciones con el fichero, devuelve al servidor una copia actualizada. Caché de disco en MS DOS y Windows La cache de los sistemas MS DOS y de los primeros sistemas Windows se denominaba SmartDrive. Por su parte, los nuevos Sistemas de 32 bits disponen de un controlador virtual denominado VCACHE que utiliza un esquema de funcionamiento de lectura adelantada y escritura atrasada para proporcionar servicios de cache a las máquinas virtuales (E0.2). VCACHE tiene la ventaja cachear ficheros en discos de red, y de permitir cambiar en tiempo de ejecución la cantidad de memoria destinada a este menester. Cuando la actividad del disco es elevada pero la ocupación de memoria es baja, VCACHE incrementa su tamaño para realizar la mayor cantidad de operación en RAM, evitando de este modo accesos a disco. Por ejemplo, si la aplicación abre un fichero para lectura/escritura, es posible que VCACHE vuelque la totalidad del fichero a memoria; posteriormente, quizás cuando se cierre el fichero, la imagen de memoria sea volcada de nuevo al disco. Si por el contrario la actividad de disco es pequeña y la ocupación de memoria es alta, VCACHE disminuye su propio tamaño con objeto de aumentar la RAM disponible para las aplicacio
20). CD DVD Memoria flash Disco duro (HD).
21). Componente fundamental del PC, también denominada frecuentemente placa madre o mediante los términos en inglés motherboard o mainboard. Es la placa más importante del PC. Sobre ella se conectan el resto de componentes y de sus características se derivan, en gran medida, las prestaciones que nos va a ofrecer finalmente nuestro ordenador. Una placa base no es sino una gran placa de circuito impreso que conecta entre sí los diferentes elementos contenidos en ella y que conforman la estructura básica del ordenador personal conocido como PC. Básicamente los elementos que componen toda placa base son: el zócalo del microprocesador, los zócalos de memoria, los diferentes conectores tanto internos como externos, las ranuras de expansión y, finalmente, una serie de chips o circuitos integrados encargados en mayor o menor medida de ciertas tareas específicas.
22). Conector o puerto de expansión en la placa base del ordenador. Se trata de cada uno de los alojamientos que tiene la placa madre en los que se insertan las tarjetas de expansión. Todas estas ranuras están conectadas entre sí y un ordenador personal tiene generalmente ocho, aunque puede llegar a doce Tipos de slots:XT, EISA, VESA, PCI, AMR, CNR, PCI-Express. · XT:Es una de las ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernas (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento; necesita ser revisados antes. · ISA: La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 MHz. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI. · VESA: En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 32 bits y con una frecuencia que varía desde 33 a 40 MHz. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 0,9 de ancho (ISA) y 0,8 de ancho (extensión). · PCI: Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
23). Chipset es el conjunto de circuitos integrados diseñados con base a la arquitectura de un procesador (en algunos casos diseñados como parte integra de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc. Las placas base modernas suelen incluir dos integrados, denominados Norte y Sur, y suelen ser los circuitos integrados más grandes después del microprocesador. El chipset determina muchas de las características de una placa base y por lo general la referencia de la misma está relacionada con la del Chipset. 24). El transformador.
25). Su velocidad.
26). Puerto PS/2, puerto USB, puerto Firewar y los puertos periféricos.
27). Infrarrojos, bluethoot y wi-fi.
28). El administrador del sistema es quien define cuántos sectores habrá en un cluster; cuantos más allá, menos movimientos de las cabezas hay que realizar, con lo que se mejoran las prestaciones en el acceso secuencial.
29). Monitores LCD Ventajas: El grosor es inferior por lo que pueden utilizarse en portátiles. Cada punto se encarga de dejar o no pasar la luz. La geometría es siempre perfecta, lo determina el tamaño del píxel Desventajas: Sólo pueden reproducir fielmente la resolución nativa, con el resto, se ve un borde negro, o se ve difuminado por no poder reproducir medios píxeles. Por sí solas no producen luz, necesitan una fuente externa. Si no se mira dentro del cono de visibilidad adecuado, desvirtúan los colores. El ADC y el DAC de un monitor LCD para reproducir colores limita la cantidad de colores representable. El ADC (Convertidor Analógico a Digital) en la entrada de vídeo analógica (cantidad de colores a representar). El DAC (Convertidor Digital a Analógico) dentro de cada píxel (cantidad de posibles colores representables). Monitores CRT Ventajas: Permiten reproducir una mayor variedad cromática. Distintas resoluciones se pueden ajustar al monitor. En los monitores de apertura de rejilla no hay moire vertical. Desventajas: Ocupan más espacio (cuanto más fondo, mejor geometría). Los modelos antiguos tienen la pantalla curva. Los campos eléctricos afectan al monitor (la imagen vibra). Para disfrutar de una buena imagen necesitan ajustes por parte del usuario. En los monitores de apertura de rejilla se pueden apreciar (bajo fondo blanco) varias líneas de tensión muy finas que cruzan la pantalla horizontalmente.
30). La frecuencia de refresco de un monitor es el número de imágenes que se muestran por segundo. Se usa en los monitores CRT, monitores LCD
31). En el TFT y pantalla plana
32). Tamaño de punto o (dot pitch): el tamaño de punto es el espacio entre dos fósforos coloreados de un píxel. Es un parámetro que mide la nitidez de la imagen, midiendo la distancia entre dos puntos del mismo color; resulta fundamental a grandes resoluciones. Los tamaños de punto más pequeños producen imágenes más uniformes. Un monitor de 14 pulgadas suele tener un tamaño de punto de 0,28 mm o menos. En ocasiones es diferente en vertical que en horizontal, o se trata de un valor medio, dependiendo de la disposición particular de los puntos de color en la pantalla, así como del tipo de rejilla empleada para dirigir los haces de electrones. En LCD y en CRT de apertura de rejilla, es la distancia en horizontal, mientras que en los CRT de máscara de sombra, se mide casi en diagonal. Lo mínimo exigible en este momento es que sea de 0,28mm. Para CAD o en general para diseño, lo ideal sería de 0,25mm o menor. 0,21 en máscara de sombra es el equivalente a 0.24 en apertura de rejilla.
33). Los TFT. 34). La Red Telefónica Conmutada (RTC; también llamada Red Telefónica Básica o RTB) es una red de comunicación diseñada primordialmente para transmisión de voz, aunque pueda también transportar datos, por ejemplo en el caso del fax o de la conexión a Internet a través de un módem acústico. Se trata de la red telefónica clásica, en la que los terminales telefónicos (teléfonos) se comunican con una central de conmutación a través de un solo canal compartido por la señal del micrófono y del auricular. En el caso de transmisión de datos hay una sola señal en el cable en un momento dado compuesta por la de subida más la de bajada, por lo que se hacen necesarios supresores de eco.
35). Un disquete tiene una capacidad de almacenamiento de 160Kb. Un CD-ROM tiene una capacidad de almacenamiento de 650Mb. Un DVD tiene una capacidad de almacenamiento de 4,7Gb.
36). El DVD lee, regrava y grava.
37). Son DVDs dual aquellos que poseen dos capas consiguiendo así una capacidad de aproximadamente 8Gb frente a los DVDs de una sola capa que tienen una capacidad aproximada de 4Gb.
38). Impresoras de rueda: Son impresoras de impacto y de caracteres. El cabezal de impresión está constituido por una rueda metálica que contiene en su parte exterior los moldes de los distintos tipos. La rueda se desplaza perpendicularmente al papel a lo largo de un eje o varilla metálica paralela al rodillo donde se asienta el papel. La rueda está continuamente girando y cuando el tipo a escribir pasa delante de la cinta entintada se dispara, por la parte posterior al papel, un martillo que hace que el carácter se imprima en tinta sobre el papel.Una vez escrito el carácter, la rueda se desplaza a lo largo de la varilla, hacia su derecha, o pasa a la línea siguiente. Estas impresoras están en desuso. Impresoras de margarita: Son impresoras de calidad de impresión, sin embargo son relativamente lentas. Los caracteres se encuentran modelados en la parte más ancha (más externa) de los sectores (pétalos) de una rueda metálica o de plástico en forma de margarita.La margarita forma parte del cabezal de impresión. Un motor posiciona la hoja de margarita del carácter a imprimir frente a la cinta entintada, golpeando un martillo al pétalo contra la cinta, escribiéndose el carácter sobre el papel. El juego de caracteres se puede cambiar fácilmente sin más que sustituir la margarita. Son análogas a las máquinas de escribir. Actualmente están fuera de uso. Impresoras matriciales o de agujas. Estas impresoras, también denominadas de matriz de puntos, son las más utilizadas con microordenadores y pequeños sistemas informáticos. Los caracteres se forman por medio de una matriz de agujas. Las agujas golpean la cinta entintada, transfiriéndose al papel los puntos correspondientes a las agujas disparadas.Los caracteres, por tanto, son punteados, siendo su calidad muy inferior a los caracteres continuos producidos por una impresora de margarita. No obstante, algunos modelos de impresoras matriciales, presentan la posibilidad de realizar escritos en semicalidad de impresión. Para ello, los caracteres se reescriben con los puntos ligeramente desplazados, solapándose los de la segunda impresión con los de la primera, dando una mayor apariencia de continuidad. Impresoras de tambor: Podemos encontrar, dentro de estas impresoras, dos tipos: De tambor compacto. De tambor de ruedas. Ambos tipos son impresoras de líneas y de impacto. La impresora de tambor compacto contiene una pieza metálica cilíndrica cuya longitud coincide con el ancho del papel. En la superficie externa del cilindro o tambor se encuentran modelados en circunferencias los juegos de caracteres, estando éstos repetidos tantas veces como posiciones de impresión de una línea. El tambor está constantemente girando, y cuando se posiciona una generatriz correspondiente a una determinada letra, la “A” por ejemplo, se imprimen simultáneamente todas las “A” de la línea. Las impresoras de tambor de ruedas son similares, sólo que cada circunferencia puede girar independientemente. Todos los caracteres de la línea de impresión se escriben a la vez, posicionándose previamente cada tipo en su posición correcta. En lugar de una cinta entintada, estas impresoras suelen llevar una pieza de tela entintada del ancho del papel. Impresoras de barras. Los caracteres se encuentran moldeados sobre una barra de acero que se desplaza de izquierda a derecha a gran velocidad, oscilando delante de la línea a escribir. El juego de caracteres está repetido varias veces (usualmente tres). Cuando los moldes de los caracteres a imprimir se posicionan delante de las posiciones en que han de quedar en el papel se disparan por detrás de éste unos martillos, imprimiéndose de esta forma la línea. El número de martillos coincide con el número de caracteres por línea. Impresoras de cadena. El fundamento es exactamente igual al de las impresoras de barra. Ahora los caracteres se encuentran grabados en los eslabones de una cadena. La cadena se encuentra cerrada y girando constantemente a gran velocidad frente a la cinta entintada. Impresoras térmicas. Son similares a las impresoras de agujas. Se utiliza un papel especial termo sensible que se ennegrece al aplicar calor. El calor se transfiere desde el cabezal por una matriz de pequeñas resistencias en las que al pasar una corriente eléctrica por ellas se calientan, formándose los puntos en el papel. Estas impresoras pueden ser: De caracteres: Las líneas se imprimen con un cabezal móvil. De líneas: Contienen tantas cabezas como caracteres a imprimir por línea. Son más rápidos. Impresoras de inyección de tinta. El descubrimiento de esta tecnología fue fruto del azar. Al acercar accidentalmente el soldador, por parte de un técnico, a un minúsculo cilindro lleno de tinta, salió una gota de tinta proyectada, naciendo la inyección de tinta por proceso térmico. La primera patente referente a este tipo de impresión data del año 1951, aunque hasta el año 1983, en el que Epson lanzó la SQ2000, no fueron lo suficientemente fiables y baratas para el gran público. Actualmente hay varias tecnologías, aunque son muy pocos los fabricantes a nivel mundial que las producen, siendo la mayoría de ellas de un mismo fabricante con una marca puesta por el que las vende. Canon (que le proporciona las piezas a Hewlett Packard) y Olivetti son los más importantes dentro de este tipo. El fundamento físico es similar al de las pantallas de vídeo. En lugar de transmitir un haz de electrones se emite un chorro de gotas de tinta ionizadas que en su recorrido es desviado por unos electrodos según la carga eléctrica de las gotas. El carácter se forma con la tinta que incide en el papel. Cuando no se debe escribir, las gotas de tinta se desvían hacia un depósito de retorno, si es de flujo continuo, mientras que las que son bajo demanda, todas las usadas con los PC´s, la tinta sólo circula cuando se necesita. Los caracteres se forman según una matriz de puntos. Estas impresoras son bidireccionales y hay modelos que imprimen en distintos colores. La contaminación que la tinta sufre con el contacto del aire, provoca peor calidad de impresión, llegando un momento en el que hay que cambiar la tinta. El equipo incorpora un depósito central de cambio fácil e instantáneo que avisa con 24 horas de antelación al momento de sustitución. El depósito central incorpora el filtro principal de tinta, con lo que se cambia sin intervención cada vez que se repone el depósito. Impresoras electrostáticas. Las impresoras electrostáticas utilizan un papel especial eléctricamente conductor (de color gris metálico). La forma de los caracteres se produce por medio de cargas eléctricas que se fijan en el papel por medio de una hilera de plumillas que abarcan el ancho del papel. Posteriormente a estar formada eléctricamente la línea, se la hace pasar, avanzando el papel, por un depósito donde se la pulveriza con un líquido que contiene suspendidas partículas de tóner (polvo de carbón). Las partículas son atraídas en los puntos que conforman el carácter. Estas impresoras de línea son muy rápidas. Impresoras láser. Estas impresoras tienen en la actualidad una gran importancia por su elevada velocidad, calidad de impresión, relativo bajo precio y poder utilizar papel normal. Su fundamento es muy parecido al de las máquinas de fotocopiar. La página a imprimir se transfiere al papel por contacto, desde un tambor que contiene la imagen impregnada en tóner.La impresión se realiza mediante radiación láser, dirigida sobre el tambor cuya superficie tiene propiedades electrostáticas (se trata de un material fotoconductor, tal que si la luz incide sobre su superficie la carga eléctrica de esa superficie cambia). Impresoras LED Son análogas a los láseres, con la única diferencia que la imagen se genera desde una hilera de diodos, en vez de un láser. Al ser un dispositivo fijo, son más compactas y baratas, aunque la calidad es peor. Algunas de las que se anuncian como láser a precio barato, son de esta tecnología, por ejemplo Fujitsu y OKI.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario